Digital Jordan Curve Theorems

نویسنده

  • Christer O. Kiselman
چکیده

Efim Khalimsky’s digital Jordan curve theorem states that the complement of a Jordan curve in the digital plane equipped with the Khalimsky topology has exactly two connectivity components. We present a new, short proof of this theorem using induction on the Euclidean length of the curve. We also prove that the theorem holds with another topology on the digital plane but then only for a restricted class

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersection Number of Paths Lying on a Digital Surface and a New Jordan Theorem

The purpose of this paper is to define the notion of “real” intersection between paths drawn on the 3d digital boundary of a connected object. We consider two kinds of paths for different adjacencies, and define the algebraic number of oriented intersections between these two paths. We show that this intersection number is invariant under any homotopic transformation we apply on the two paths. ...

متن کامل

Discrete Jordan Curve Theorems

There has been recent interest in combinatorial versions of classical theorems in topology. In particular, Stahl [S] and Little [3] have proved discrete versions of the Jordan Curve Theorem. The classical theorem states that a simple closed curve y separates the 2-sphere into two connected components of which y is their common boundary. The statements and proofs of the combinatorial versions in...

متن کامل

Detecting Centres of Maximal Geodesic Discs on the Distance Transform of Surfaces in 3D Images

p. 3 Tesselations by Connection in Orders p. 15 A Concise Characterization of 3D Simple Points p. 27 Digital n-Pseudomanifold and n-Weakmanifold in a Binary (n+1)-Digital Image p. 37 Digital Jordan Curve Theorems p. 46 A New Means for Investigating 3-Manifolds p. 57 Nearness in Digital Images and Proximity Spaces p. 69 Morphological Operators with Discrete Line Segments p. 78 Hausdorff Discreti...

متن کامل

A Nonstandard Proof of the Jordan Curve Theorem

In this paper a proof of the Jordan curve theorem will be presented. Some familiarity with the basic notions of nonstandard analysis is assumed. The rest of the paper is selfcontained except for some standard theorems about polygons. The theorem will be proved in what ought to be a natural way: by approximation by polygons. This method is not usually found in the standard proofs since the appro...

متن کامل

A Proof of the Jordan Curve Theorem via the Brouwer Fixed Point Theorem

The aim of the paper is to report on MIZAR codification of the Jordan curve theorem, a theorem chosen as a challenge to be completely verified using formal methods at the time when they started being commonly used. Formalization was done based on proofs taken from the literature, where theorems mentioned in the title of the paper from ”Brouwer’s Fixed Point Theorem and the Jordan Curve Theorem”...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000